(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
Types:
not :: or:and → or:and
or :: or:and → or:and → or:and
and :: or:and → or:and → or:and
hole_or:and1_0 :: or:and
gen_or:and2_0 :: Nat → or:and
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
not
(6) Obligation:
Innermost TRS:
Rules:
not(
not(
x)) →
xnot(
or(
x,
y)) →
and(
not(
not(
not(
x))),
not(
not(
not(
y))))
not(
and(
x,
y)) →
or(
not(
not(
not(
x))),
not(
not(
not(
y))))
Types:
not :: or:and → or:and
or :: or:and → or:and → or:and
and :: or:and → or:and → or:and
hole_or:and1_0 :: or:and
gen_or:and2_0 :: Nat → or:and
Generator Equations:
gen_or:and2_0(0) ⇔ hole_or:and1_0
gen_or:and2_0(+(x, 1)) ⇔ or(hole_or:and1_0, gen_or:and2_0(x))
The following defined symbols remain to be analysed:
not
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
not(
gen_or:and2_0(
n4_0)) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
not(gen_or:and2_0(0))
Induction Step:
not(gen_or:and2_0(+(n4_0, 1))) →RΩ(1)
and(not(not(not(hole_or:and1_0))), not(not(not(gen_or:and2_0(n4_0))))) →RΩ(1)
and(not(hole_or:and1_0), not(not(not(gen_or:and2_0(n4_0))))) →IH
and(not(hole_or:and1_0), not(not(*3_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
not(
not(
x)) →
xnot(
or(
x,
y)) →
and(
not(
not(
not(
x))),
not(
not(
not(
y))))
not(
and(
x,
y)) →
or(
not(
not(
not(
x))),
not(
not(
not(
y))))
Types:
not :: or:and → or:and
or :: or:and → or:and → or:and
and :: or:and → or:and → or:and
hole_or:and1_0 :: or:and
gen_or:and2_0 :: Nat → or:and
Lemmas:
not(gen_or:and2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_or:and2_0(0) ⇔ hole_or:and1_0
gen_or:and2_0(+(x, 1)) ⇔ or(hole_or:and1_0, gen_or:and2_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
not(gen_or:and2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(11) BOUNDS(n^1, INF)
(12) Obligation:
Innermost TRS:
Rules:
not(
not(
x)) →
xnot(
or(
x,
y)) →
and(
not(
not(
not(
x))),
not(
not(
not(
y))))
not(
and(
x,
y)) →
or(
not(
not(
not(
x))),
not(
not(
not(
y))))
Types:
not :: or:and → or:and
or :: or:and → or:and → or:and
and :: or:and → or:and → or:and
hole_or:and1_0 :: or:and
gen_or:and2_0 :: Nat → or:and
Lemmas:
not(gen_or:and2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_or:and2_0(0) ⇔ hole_or:and1_0
gen_or:and2_0(+(x, 1)) ⇔ or(hole_or:and1_0, gen_or:and2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
not(gen_or:and2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(14) BOUNDS(n^1, INF)